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The frequency and damping rate of surface capillary-gravity waves in a bounded 
region depend on the conditions imposed where the free surface makes contact with 
the boundary. Extreme cases are when the free surface meets the boundary 
orthogonally, as in the case of pure gravity waves, and when the contact line remains 
fixed throughout the motion. An edge condition that models to some extent the 
dynamics associated with moving contact lines, but not contact-angle hysteresis, is 
given by making the slope of the free surface at contact proportional to its velocity. 
This model, which includes the two extreme cases, is used to obtain the frequency 
and damping rate of a standing wave between two parallel vertical walls. The effect 
of viscosity in the boundary layers on the walls is included and it is shown that the 
dissipation associated with the surface forces can exceed that produced by viscosity. 
The results are compared with those obtained from a number of experimental 
investigations, in which damping rates too large to be attributed to viscous action 
have been measured. 

1. Introduction 
Most research on capillary-gravity waves on a free liquid surface has concentrated 

on their propagation. In  a confined region, the methods for determining the 
frequencies of standing gravity waves are well known (Lamb 1932 chapter 9), at least 
for vertical boundaries. In large basins, like harbours and lakes, capillarity can safely 
be ignored, but this is not so when the container has a horizontal dimension of 
typically a few centimetres. Even then, the effect of capillarity does not introduce 
more than a quantitative change except for very small containers, high-frequency 
modes and low-gravity environments. 

The presence of capillarity adds an extra term to the free-surface pressure 
condition. This term is proportional to the curvature of the free surface and, for 
progressive waves, produces a change in the frequency of the waves for given 
wavenumber. The increase in the order of the pressure condition, however, requires 
extra conditions to be imposed when the solution is sought in a finite region. These 
conditions control the position of the free surface a t  its intersection with the boundary 
of the container. 

Without capillarity, the free surface must intersect the vertical walls orthogonally. 
If this is imposed as the required condition when capillarity is present, the only 
influence of this extra feature is to alter the frequency of the standing waves in the 
container in a similar way to the change produced in progressive waves. But it is far 
from clear that the condition of orthogonal intersection of free surface and boundary 
is the appropriate one for standing capillary-gravity waves. 
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Recent work by Benjamin & Scott (1979) and Graham-Eagle (1983, 1984) has 
examined an alternative boundary condition at the edge of the free surface, namely 
that in which the surface elevation there is unchanged from its equilibrium position. 
These authors argue that this is the appropriate condition for a rim-full container 
and calculate the frequencies for progressive waves along a channel with sidewalls, 
two-dimensional standing waves between two vertical boundaries and standing 
waves in a circular cylinder. The change in the edge condition makes such problems 
considerably more difficult. With orthogonal intersection, the fluid motion and the 
elevation of the free surface can be found in terms of a single separated-variable mode 
for each frequency. With zero elevation at the edge, the complete set of such modes 
of the fluid motion must be used and the frequencies are given by the zeros of a 
function defined by an infinite series, all the terms of which depend on the frequency. 

Benjamin & Scott (1979) argue that the pinned-end edge condition may also be 
appropriate when the container is not rim-full. When a fluid interface and a solid 
boundary intersect, the Young-Laplace equation shows that the angle of intersection 
is fixed in static conditions. A large body of experimental evidence (see Dussan V. 
1979) indicates that such a unique contact angle does not exist in general. If by the 
contact angle is meant the angle as measured at some small distance from the actual 
contact line, removed from the immediate influence of molecular effects and surface 
roughnesses, a range of static angles appears to exist, centred on the Young-Laplace 
angle, within which equilibrium can be maintained. This range is exceeded when the 
contact line moves, the angle increasing when the interface moves forward, that is, 
in the direction away from the bulk of the fluid. When the interface moves in the 
opposite direction, the contact angle is reduced to values less than the minimum of 
the static range. 

The extension of the gravity-wave condition of an orthogonal intersection, the 
free-end edge condition, to waves with capillarity implies that the contact angle is 
fixed at 90" with no dynamic behaviour and that the contact line can move freely 
across the solid boundary. Benjamin & Scott (1979) suggest that if the Young- 
Laplace angle is 90" and the wave is of small amplitude, then the slope at  the wall will 
lie within the static range of contact angle and the edge condition should be replaced 
by one in which the edge remains stationary, the pinned-end edge condition. If the 
Young-Laplace angle is not 90°, the equilibrium position of the free surface is not 
flat and the determination of the standing-wave frequencies becomes much more 
difficult whatever edge condition is applied. When the waves have small amplitude, 
the free-surface conditions can be applied at the undisturbed position of the surface 
and the solution is more difficult to obtain when this surface is not 0at. Apart from 
some general results relating to this situation by Graham-Eagle (1984), I know of no 
published work on this problem. 

The range of possible static contact angles appears to be related to surface 
roughnesses on the solid boundary (Jansons 1985) and can be reduced by careful 
preparation of the material. It is possible, therefore, that the wave amplitude may 
be sufficiently large (but still small enough for linear theory to be adequate) that the 
static range of contact angle is exceeded, and the dynamic behaviour then becomes 
significant. To allow for both the static range and the dynamic behaviour in the edge 
condition would require the imposed boundary condition to change its form during 
the motion and would be difficult to implement. A more profitable alternative, 
suggested by Davis (1980) in a different context, is to explore the situation when the 
static range of angle is negligibly small, in which case the dynamic behaviour becomes 
the significant feature. If the static angle is again taken to be 90" and a linear variation 
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of contact angle with the speed of the contact line is taken to be sufficiently accurate, 
the edge condition has the form 

where 7’ is the free-surface elevation, t’ is the time, n is normal to the solid boundary 
drawn into the fluid and A’ is some constant, measuring the ratio of the speed of the 
contact line to the change in contact angle. This condition takes into account some 
of the wetting properties of the fluid and will be referred-to as the wetting condition. 
The assumed linearity is probably sufficiently accurate unless the amplitude of the 
waves, and hence the speed of the contact line, is so large that the dynamic angle 
approaches its limiting values of 0” or 180’. An important feature of this condition 
is that it includes, as special cases, both the free-end (A’ = 00)  and the pinned-end 
(A’ = 0) edge conditions. 

There are two questions of major importance in studying standing waves. One is 
the determination of their possible frequencies and the other is their damping rate. 
The damping of gravity waves was examined theoretically by Ursell (1952), who 
showed that the major contribution came from the action of viscosity at the sidewalls, 
except for very wide or very shallow containers. Miles (1967) studied the damping 
in closed basins, including the effects of capillary hysteresis. He assumed that the 
contact angle takes constant but different values, depending on the direction of 
motion of the contact line and deduced the dissipation from the rate of working of 
the capillary forces. The fraction of the time period during which the contact angle 
changes and the contact line is at rest is ignored. The frequency of the wave is 
determined without reference to the edge conditions, that is, the free-end value is 
tacitly assumed. 

The importance of the edge region in the calculation of the viscous damping of 
surface waves has been demonstrated by Mei & Liu (1973). They show that the Stokes 
layer at  the wall interacts with the free surface in a corner region which acts as an 
oscillating source and forces an interior potential flow of order d, where v is the 
kinematic viscosity. It is essential that this contribution be included when calculating 
the leading-order term in the viscous damping rate. The forced pressure has a 
logarithmic singularity at the corner, as expected when a moving contact line is 
present. In  the absence of surface tension, as in the analysis of Mei & Liu, the surface 
elevation is also unbounded at the edge. When surface tension is present, however, 
the singular pressure is balanced by the free-surface curvature, and the elevation is 
uniformly small. 

Measurements of the damping of surface waves have been made by Benjamin & 
Ursell(1954), Case & Parkinson (1957) and Keulegan (1959) for containers of various 
shapes. The degree of agreement between these observations and the predicted values 
of the damping rate based on the action of viscosity is variable and seems to depend 
on the properties of the particular materials used and the preparation of the solid 
boundaries. One suggestion made by these authors is that the discrepancy between 
theory and observation may result from the neglected capillary effects, particularly 
when associated with the behaviour of the interface near the edge, but I am not aware 
of any attempt to carry out their proposals for further study, apart from the paper 
by Miles (1967). It should, however, be emphasized that a major contributor to the 
excessive damping rates is likely to be contamination by surface-active agents. 

The change from the free-end edge condition used by these authors to the 
pinned-end condition suggested by Benjamin & Scott (1979) is not likely to lead to 
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an improvement in the gap between theory and experiment. The damping rate when 
this edge condition is used is probably less than that for the free-end condition because 
of the reduction in the movement of the interface at  the contact line and hence of 
the fluid near to it. The discrepancy, however, is in the opposite direction, the 
observed damping rates being often considerably greater than the theoretical 
predictions. The wetting boundary condition, on the other hand, implies the 
dissipation of energy a t  the contact line and this new contribution to the decay rate 
of the waves may be equal to or greater than that produced by viscosity. 

Except when A‘ = 0, the wetting edge condition implies a moving contact line. It 
is well known that viscous stresses become singular at such a line and in order to 
obtain bounded dissipation rates i t  is necessary to resolve this singularity. One way 
by which this can be achieved is by postulating a small slip region near the contact 
line (see Dussan V. 1979). Whatever the nature of the slip and the detailed structure 
of the flow in this region, the macroscopic effect is to replace the unbounded 
dissipation of energy a t  the contact line by a value proportional to the viscosity and 
to the logarithm of the scaled extent of the slip region. In the present work, the 
dissipation is only calculated to first order in a small parameter proportional to 
the square root of the viscosity so that the contribution to the dissipation from the 
neighbourhood of the contact line only enters at  a later stage in the expansion. It 
is therefore possible to ignore the effect of the moving contact line; however, it is 
possible that the value of the parameter A’ in the wetting edge condition may be 
partly dependent on what is happening in the contact line region. 

In  this paper the wetting condition is applied to the problem of standing 
capillary-gravity waves between two parallel vertical walls. The frequencies of these 
waves, and their damping both by wetting and by viscosity, are calculated. Since 
the value of the coefficient A’ in the wetting condition is not precisely known, there 
is little point, in this exploratory study, in finding solutions for the particular 
geometries relevant to the experiments mentioned before, although there is no 
difficulty, in principle, in carrying out these calculations. Some measure of the likely 
effect of the wetting condition in producing dissipation of the waves can be deduced 
from the particular and simple cases studied. These estimates are compared in the 
final section of this paper with the observations of Benjamin & Ursell (1954), Case 
& Parkinson (1957) and Keulegan (1959). In  some cases it appears that the proposed 
wetting condition predicts decay rates as large as those observed, but in others the 
discrepancy between theory and observation cannot be explained in this way. 

Before proceeding with the details of the solution, it is perhaps advisable to list 
the assumptions on which the theory is based. The static contact angle is 9oo, the 
waves are two-dimensional and of small amplitude, the boundaries are vertical and 
the depth of the fluid is sufficiently large compared with the wavelength and the 
width of the container for the bottom to have a negligible effect. The use of the wetting 
condition implies that the smallest lengthscales used are large compared to the 
microscopic scales relevant to the immediate vicinity of the contact line, namely the 
molecular scale and the size of the roughnesses on the solid wall. The smallest 
lengthscale occurring in the solution is the thickness of the viscous boundary layer 
at the wall, typically 1 mm, whereas the maximum lengthscale associated with 
surface roughness is usually less than 1 pm. 

2. Two-dimensional standing waves 
If fluid is confined between two parallel vertical walls, standing waves with crests 

parallel to the walls can be generated. Let (x, y) (u/R) be Cartesian coordinates with 
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origin in the equilibrium free surface midway between the walls. The x-axis is normal 
to the walls, the y-axis is in the upward vertical direction, and the distance between 
the walls is a. The velocity components are (u, v) (ag/n)f and the time is t(a/xg)i, where 
g is the gravitational acceleration. There is no variation in the horizontal direction 
parallel to the walls. The linearized equations of fluid motion are: 

au av 
ax ay 
-+- = 0, (4) 

where p is the non-dimensional pressure, f is an inverse Reynolds number, and only 
the relevant viscous terms are included. Viscosity is most important in the boundary 
layer at the wall and its effect in the body of the fluid and at the free surface are 
ignored. 

The boundary conditions are that the velocities tend to zero as y + -  m and that 
there is no slip at the walls, so that 

u=O, v = O  a t x = + $ .  (5) 

If r](x,t) is the free-surface elevation above its equilibrium position y = 0, the 
kinematic and pressure conditions there, in linearized form, are 

where K is the capillarity coefficient. Finally, the wetting edge condition proposed 
in the previous section is 

-+A- a7 = 0 at x = +in, a7 
at-  ax 

where A is the non-dimensional form of the coefficient A’ in (1). The solution of these 
equations depends on the values of three parameters, 

where p,  v, y are respectively the density, kinematic viscosity and surface tension 
of the fluid. The viscosity parameter f is assumed to be small, whereas the wetting 
parameter A and the capillarity parameter K can have all values from zero to infinity. 

The waves can be divided into two classes, the odd modes in which p, v and 7 are 
odd in x and u is even, and the even modes which have the opposite parity. The first 
class will be analysed in detail and only a summary of the corresponding results 
for the even modes will be given. It is expected that the mode with lowest frequency 
is an odd mode ; this is certainly the case when the free-end edge condition is used. 
The solution (to the order studied) can be split into three parts: the O(1)-motion in 
the interior of the fluid, boundary-layer solutions near each wall, and the O( f i)-motion 
in the interior forced by these boundary layers and the corner regions. There is no 
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forcing of the solution at  a given frequency and the goal of the analysis is the 
determination of the complex frequency to O( f t ) ,  the (positive) imaginary part giving 
the damping rate. 

The fluid motion in the interior for the odd modes can be written in the form 
m 

E Pn sin (2n+ 1) x e(zn+l)g, 
n-o 

po = 

m 

n-0 

m 

n-o 

uo = i c (2n+1)Pn c o s ( 2 n + 1 ) ~ e ( ~ ~ + ~ ) y ,  

wo = i E ( 2 n + i ) P , s i n ( 2 n + i ) ~ e ( ~ ~ + ' ) " ;  

a time factor exp ( i d )  has been dropped from each term. 
This form of the solution satisfies the equations with f = 0, the boundary conditions 

of no normal velocity at the walls and the condition at  y = - 00. The slip velocity 
parallel to the wall can be reduced to zero by the addition of the solutions 

in the boundary layers a t  x = &$, where 

ft $xi 

a : -  w = -  

These values of u+ and u- do not vanish at the appropriate walls, so there must be 
a correction of O( f t )  to the interior motion. This correction can be written in terms 
of a pressure pl, where 

m 

and %="a c (-i)n(2n+1)2~,e(2n+l)~ a tz=+_+n.  (16) 
ax n-o 

The free-surface conditions (6) and (7) have the forms 

which are to be evaluated a t  y = 0. The boundary-layer contribution, B(x),  is 
defined bv 

If we now expand both 7 and c in the form 
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the first two terms in (17 )  and (18) are 

all of which are to be evaluated at y = 0. The value of qo, determined by (10) and 
(21a) is given by 

1 *  

g o  n-0 
yo = - E (2n + 1) Pn sin (2n + 1) s, 

and then (22a) becomes 

327 1 * K G  = - (2n + 1 - a:) Pn sin (2n + 1) 2. 
a o  n-0 

The solution of this equation is 

4 - 2 n - 1  
P sin (2n + 1 )  z+ A s ,  

%I = :o a0K(2n+ 1 ) 2  

(23) 

where A is a constant. If we express As as a Fourier sine series and equate the values 
of vo given by (23) and (25), we obtain 

where d , ( g )  = a2-n-Kn3. (27) 

The edge conditions (8), to leading order, imply that 
03 

i Z ( -1)n(2n+1)Pn+hA = 0,  
n-o 

and it follows from (26) that the equation for the frequency a. is 

The analysis leading to this equation for the frequency is similar to that given by 
Benjamin & Scott (1979) for the special case h = 0. The free-end edge condition is 
h = 00, and (29) can only be satisfied if a term in the infinite series has a zero 
denominator. This gives the familiar result 

~ ~ ~ = 2 n + l + K ( 2 n + l ) ~ .  (30) 

In both the free- and the pinned-end cases, the values of v0 are real. For general values 
of A,  it is clear from (70) that a. has an imaginary part and the wetting edge condition 
involves dissipation of energy, which leads to a damping of the waves. 

In  order to determine the correction of orderff. to the complex frequency, it is not 
necessary to determine p l ,  q1 and the associated velocity components. The method 
of Mei & Liu (1973) used here determines cl from integrated forms of the equations. 

Since both p ,  and p ,  are harmonic functions, 
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The divergence theorem can be used to express this integral in terms of integrals over 
the boundary of the fluid and we obtain 

Since ap0/ax = 0 at x = f +x the values of p, there are not needed, and 8pl/ax is given 
by (16). The values of p, and ap,/ax at  the free surface can be found from (21b) and 
(22b). Hence the remaining unknown, ul, can be determined. On making use of the 
known value of p ,  and the equation satisfied by uo, and after integration by parts, 
the evaluation of (32) finally leads to the following equation for the frequency 
correction ul : 

The complex frequency to the order calculated is given by u = ao+al. The real 
parts of uo and u1 determine the frequency of the wave and the viscous correction 
to leading order. The imaginary parts give the damping rates produced by the wetting 
condition and viscosity, respectively. 

For the even modes the interior solution has the form 

Pn cos2nx eZnv+P, (34) 

The presence of the spatially constant pressure term Po is a novel feature of the even 
modes and it can be determined by requiring that the volume of the fluid remain 
constant, which is equivalent to the condition 

Tdx = 0. Ir:. (35) 

In the odd modes, this condition is automatically satisfied and the constant pressure 
term is excluded, since the pressure is an odd function of x in these modes. Similar 
analysis to that described in connection with the odd modes leads to equations for 
the leading terms in the frequency of the form 

For both classes of modes, the evaluation of the frequencies is a numerical task. 
When A = 0, it is clear that real values of uo exist between successive zeros of the 
denominators in (29) and (36). These values can be found first, for a particular value 
of K ,  and used as starting values in the search for solutions as A is increased. Complex 
Newton-Raphson iteration enabled the roots to be found quickly, although some care 
was necessary in the choice of an initial guess in the iteration to prevent the process 
jumping back to a previously determined root. There are an infinite number of roots 
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A 

K 0 

1 
O O  

1.2833 
0.1 

2.4564 
l o  

2 o  

5 0  

3.2987 

5.0417 

7.0460 
lo 0 

22.0394 100 

0.1 1 2 5 10 100 

1 1 1 1 1 1 
0 0 0 0 0 0 

1.2688 1.0617 1.0520 1.0493 1.0489 1.0488 
0.0650 0.0621 0.0317 0.0127 0.0064 O.OOO6 

2.4518 1.7421 1.4503 1.4191 1.4154 1.4142 
0.0971 0.7570 0.3368 0.1284 0.0638 0.0064 

3.2955 2.8730 1.8139 1.7401 1.7340 1.7321 
0.1025 1.0593 0.7424 0.2601 0.1280 0.0127 

5.0397 4.8272 3.6904 2.4641 2.4524 2.4495 
0.1064 1.0919 2.2191 0.6770 0.3229 0.0318 

7.0446 6.9053 6.3650 3.3458 3.3200 3.3167 
0.1078 1.0933 2.2765 1.4668 0.6564 0.0637 

22.0388 21.9976 21.8700 20.8412 12.9129 10.0491 
0.1091 1.0928 2.1956 5.6668 10.9859 0.6386 

TABLE 1. Real (top) and imaginary (bottom) parts of a, 

a, 

1 
0 

1.0488 
0 

1.4142 
0 

1.7321 
0 

2.4495 
0 

3.3166 
0 

10.0499 
0 

K 

0 

0.1 

5 

10 

100 

0 

-0.1254 
0.1254 

-0.1552 
0.1552 

-0.1784 
0.1784 

-0.2194 
0.2194 

-0.2589 
0.2589 

-0.4572 
0.4572 

0.1 1 2 5 10 100 

-0.2251 -0.2251 -0.2251 -0.2251 -0.2251 -0.2251 
0.2251 0.2251 0.2251 0.2251 0.2251 0.2251 

-0.0956 -0.2194 -0.2252 -0.2282 -0.2293 -0.2304 
0.1665 0.2490 0.2380 0.2331 0.2318 0.2306 

-0.1345 -0.3987 -0.3648 -0.2947 -0.2790 -0.2687 
0.1765 0.6554 0.2596 0.2525 0.2586 0.2666 

-0.1606 +0.0244 -0.5709 -0.3557 -0.3217 -0.2985 
0.1964 0.5671 0.3084 0.2642 0.2772 0.2940 

-0.2051 -0.0505 -0.0751 -0.5129 -0.4141 -0.3574 
0.2337 0.4067 1.3446 0.2831 0.3098 0.3473 

-0.2468 -0.1256 +0.0673 -0.7935 -0.5289 -0.4191 
0.2710 0.3952 0.6943 0.3057 0.3377 0.4012 

-0.4503 -0.3880 -0.3142 -0.0275 - 1.9467 -0.7701 
0.4640 0.5259 0.5992 0.9320 4.4159 0.6642 

TABLE 2. Real (top) and imaginary (bottom) parts off-h,  

a, 

-0.2251 
0.2251 

-0.2305 
0.2305 

-0.2677 
0.2677 

-0.2962 
0.2962 

-0.3523 
0.3523 

-0.4099 
0.4099 

- 0.7 1 35 
0.7135 

of both classes, the first few of which were calculated for a restricted range of values 
of A and K. Most attention, however, was given to the odd mode of lowest frequency. 
When h = co, this mode is the fundamental sloshing mode in which there is a single 
nodal line on the free surface (at 2 = 0). 
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01 1 I I I I 1 
0.1 1 .o 10 100 

A 

Im u,, 

A 
FIQURE 1. (a) Real part of u,. (b )  Imaginary part of a,. 

Some of the results obtained are given in tables 1 and 2 and figures 1 and 2. The 
entries in table 1 contain the real (top line) and imaginary (bottom line) parts of cr,, 
(see also figure 1). The frequency decreases with increasing A, but the total variation 
is not large. Even for large K the ratio of the extreme values at A = 0 and co is no 
more than about two. The imaginary parts give the damping rate associated with 
capillarity and the edge condition. As predicted this is zero for the free- and 
pinned-end cases, but intermediate values of A give significant damping rates. The 
maximum values as a function of h occur at values of h proportional to Id, and they 
increase with K. In table 2 the entries, when multiplied byff.,  give the viscous 
correction to the frequency and the viscous damping rate in the top and bottom lines, 
respectively (see figure 2). The frequency correction has a complicated dependence 
on both A and K, but it is not a particularly significant quantity. The viscous damping 
coefficient has a weak dependence on both A and K, except for the appearance of 
narrow peaks where A is proportional to Kf., where values in excess of 0.6 are obtained. 
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(a) 
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1 I I I I I 

0.1 1 .o 10 100 
A 

FIQURE 2. (a) Real part offtu, .  (b )  Imaginary part off+ul. 

0, I 

Some limiting values of u can be expressed analytically, using the definitions of 

(38) 
(-l+i) 

cr,, and u1 in (29) and (33) and the calculated results. For h = 00, we find that 

c r =  ( l + K ) f +  x1/2 f 41 +4*. 

The limits h = co and K = 0 are equivalent, so that when K = 0 we have 

( - l + i )  
n2/2 f a ,  

u =  1+ (39) 

For K large, the dependence of u on K can be deduced from (29) and (33) and the 
numerical constants estimated from the calculated results for K = 100. In this limit, 
the value of u is given approximately by the expression 

(40) 
It should be noted that the order in the double limits h = 0, K = 0 and h = co, 
K = 00 is important. 

cr = 2.2K~+O.llih+O.l45(-1 +i) f & f .  
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3. Comparison with experimental values 
The predicted damping rates for standing waves between two walls enable the 

relative importance of viscous damping and that produced by capillary action to be 
assessed. Experiments on the damping of standing waves have been performed in 
containers of various shapes by several investigators. Although the geometrical 
configurations used differ from the two parallel vertical walls assumed in $2, it  is 
possible to make order-of-magnitude comparisons to test the extent to which the 
wetting edge condition accounts for the action of surface tension in the damping of 
the waves. 

3.1. Benjamin & Ursell (1954) 
In these experiments a circular container was oscillated vertically to produce the 
parametric excitation of a standing wave in the contained fluid. The frequency of 
the wave generated was found to be in good agreement with the predicted value, but 
the damping rate was found to be up to 20 times that calculated from viscous 
dissipation in the boundary layer on the wall. The authors state that the discrepancy 
may be due to their neglect of surface-tension effects. The details of their apparatus 
suggest that an appropriate comparison between their results and those calculated 
from the results obtained in $2 can be made by taking K to be about 0.2 and f 4 about 
0.03. Results calculated for this value of K and for various values of h are shown in 
table 3, where the first line contains the damping rate associated with surface tension 
and the second line contains the viscous effect. From these results it can be seen that 
it is possible for the surface-tension effect to be more than 10 times the viscous effect 
when A is less than about 2, but that the ratio decreases as h is increased, with the 
viscous effect becoming the dominant one for h greater than 10. 

It appears, therefore, that the proposed wetting edge condition can account for the 
excessive damping observed in the experiments. Some caution is necessary, however, 
in claiming that this is the true cause of the high damping rates. The authors do not 
state what precautions they took to avoid the presence of surfactant materials, which 
are known to alter the behaviour of surface waves to a marked extent. 

3.2. Case & Parkinson (1957) 
These experiments were performed in circular cylinders of two different radii filled 
to various levels. The fundamental sloshing mode was excited by rocking the cylinder. 
The measured frequencies were slightly higher than those predicted by ignoring 
surface tension and using the free-end edge condition. The authors attribute this 
discrepancy of about 5 % to capillary effects associated with wetting of the cylinder 
wall. The damping rate was also close to that predicted from viscous dissipation, the 
agreement being improved when the observed frequencies were used instead of the 
theoretical values. When the water depth was less than the radius of the cylinder 
the agreement was not so good, but here we consider only the deep water results. 

The values of K and f appropriate to the experiments are given by K = 0.017, 
f t  = 0.011 for the cylinder of radius 38 mm, and K = 0.0042, f: = 0.0065 for the 
cylinder of radius 76 mm. When allowance is made for the increased area of the 
cylinder walls compared with that of the two plane walls, the observations are in 
reasonable agreement with those in tables 1 and 2. For the smaller cylinder, surface 
tension dominates viscosity as the important damping mechanism when A is less than 
5 and the maximum ratio of the two contributions to the total damping rate is about 
8 when h = 0.2. For the larger cylinder, surface tension dominates when h is less than 
2 and the ratio has a maximum value of about 3, again when A = 0.2. 
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A 0.1 0.2 0.5 1 2 5 10 20 50 100 

Capillary 0.0754 0.146 0.219 0.126 0.064 0.025 0.013 0.006 0.002 0.001 
Viscous 0.0048 0.0062 0.0101 0.0078 0.0072 0.0071 0.0071 0.0071 0.0071 0.0071 
Ratio 16 23 22 16 8.9 3.5 1.8 0.85 0.28 0.14 

TABLE 3. Damping rates for K = 0.2 and f f = 0.03 

An interesting feature of these experiments was the variation in damping rates 
between unpolished and polished surfaces. When the cylinder surfaces were polished 
the measured damping rates agreed with the predictions based on viscous damping 
only and the free-end edge condition. In  the unpolished state the damping rate 
reached values two or three times those for the polished surfaces. These results are 
consistent with those of Q 2 if we assume a value for A greater than 10 for the polished, 
and about 1 for the unpolished cylinders. The presence of surface roughnesses in the 
unpolished state, if sufficiently large, would suggest that the pinned-end edge 
condition should apply, the static range of contact angles being large enough to 
suppress any motion of the contact line. However, there would then be no damping 
associated with surface tension and the remaining viscous contribution would be 
about one-half of that in the free-end case. The increased damping in the unpolished 
cylinders cannot be explained in this way. If the surface roughnesses before polishing 
were not large, it  is arguable that the wetting edge condition with moderate values 
of A is appropriate, and the results obtained are not inconsistent with this hypothesis. 

3.3. KeuZegan (1959) 
The containers used in these experiments were similar rectangular tanks with a 
widthllength ratio of 0.22 and a depthllength ratio of 0.43. Rocking of the container 
produced the fundamental sloshing mode, with a single nodal line half-way along the 
tank and no variation across its width. The measured dissipation was split into two 
parts, a viscous part and a part due to surface tension. The viscous part was found 
to be proportional to d, as expected; the second part was shown to be proportional 
to the surface tension. A change to containers made of lucite was accompanied by 
an increase in the damping, the surface tension component being about six times that 
when glass tanks were used. 

It is difficult to make qualitative comparisons between these results for shallow 
and narrow tanks and the theory of $2 which relates more readily to deep and wide 
containers. In the parameterization used by Keulegan the width/length ratio enters 
to the third power. The presence of a surface tension component in the total damping 
points to some mechanism of the sort modelled by the wetting edge condition and 
the increased damping when lucite replaces glass is consistent with a change in the 
parameter A. The capillary contribution to the damping rate is denoted as a2 by 
Keulegan and is related to the quantities defined in $2 by the equation 

For the small values of K relevant to the experiments, the results in table 1 predict 
that ap should be proportional to K as found in the experiments. Since the distilled 
water used in the experiments wets glass easily, large values of A are appropriate in 
this case. With containers made of lucite, which is not readily wetted by water, a 
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moderate value of h should be used. For the small values of K relevant to the 
experiments the capillary damping can be increased by a factor of 10 by reducing 
h from 10 to 1 or from 5 to 0.5. When increasing amounts of a wetting agent were 
added to the water in the lucite containers the damping rate decreased until it became 
comparable with that in the glass containers. This decrease is consistent with the 
value of h being increased by the presence of the wetting agent. 

In this paper, it has been shown how a theoretical determination of the damping 
of surface waves by capillary action can be made. This damping is associated with 
conditions a t  the line of contact between the fluid and the container. The size of the 
capillary component is such that it may make a significant contribution to the total 
damping rate, sometimes a dominant one. Since the wetting edge condition can 
account at  least partially for the effect of surface tension in dissipating the wave 
energy, the next step is to obtain quantitative estimates of damping rates in 
cylindrical and rectangular containers of finite depth. These estimates would enable 
a more satisfactory comparison with the experimental results to be made. Another 
possible extension is to adapt the wetting edge condition to include contact-angle 
hysteresis. The contact line would then have a stick-slip motion; when the line 
reaches its extreme positions i t  remains stationary for a period during which the 
contact angle varies over the static range before reversing its motion. Another 
important extension would be to remove the restriction to contact angles close to 90'. 
This is of particular importance for the case of wetting fluids, when the contact angle 
may be very small, but it is not clear to me how this extension could easily be made. 
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